Adding ±1 to the Argument of a Hall–littlewood Polynomial

نویسندگان

  • ALAIN LASCOUX
  • Xavier Viennot
چکیده

’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o Shifting by ±1 powers sums: pi → pi ± 1 induces a transformation on symmetric functions that we detail in the case of Hall–Littlewood polynomials. By iteration, this gives a description of these polynomials in terms of plane partitions, as well as some generating functions. We recover in particular an identity of Warnaar related to Rogers–Ramanujan identities. ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adding ± 1 to the argument of an Hall - Littlewood polynomial

Shifting by ±1 powers sums: pi → pi± 1 induces a transformation on symmetric functions that we detail in the case of Hall-Littlewood polynomials. By iteration, this gives a description of these polynomials in terms of plane partitions, as well as some generating functions. We recover in particular an identity of Warnaar related to RogersRamanujan identities. ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ o...

متن کامل

Why Should the Littlewood–richardson Rule Be True?

We give a proof of the Littlewood-Richardson Rule for describing tensor products of irreducible finite-dimensional representations of GLn. The core of the argument uses classical invariant theory, especially (GLn,GLm)duality. Both of the main conditions (semistandard condition, lattice permutation/Yamanouchi word condition) placed on the tableaux used to define Littlewood-Richardson coefficient...

متن کامل

Interpolation, Integrality, and a Generalization of Macdonald's Polynomials

For q = 0 and q = t, one gets the Hall-Littlewood polynomial Pλ(x; t) and the Schur polynomial sλ, respectively, while limt→1 Pλ(x; t, t) yields the Jack polynomial P λ (x). Our first result is a generalization of Pλ(x;q, t) to n “t-parameters.” Thus let τ = (τ1, . . . , τn) be indeterminates, and put F = Q(q, τ). If μ is a partition, write q−μτ for the n-tuple (q−μ1τ1, . . . , q−μnτn). We show...

متن کامل

The expansion of Hall-Littlewood functions in the dual Grothendieck polynomial basis

A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion of stable Grassmannian Grothendieck polynomials into monomials was first given by Buch, using set-valued tableaux. The dual basis of the stable Grothendieck polynomials was gi...

متن کامل

Combinatorial Formula for Modified Hall-Littlewood Polynomials

We obtain new combinatorial formulae for modified Hall–Littlewood polynomials, for matrix elements of the transition matrix between the elementary symmetric polynomials and Hall-Littlewood’s ones, and for the number of rational points over the finite field of unipotent partial flag variety. The definitions and examples of generalized mahonian statistic on the set of transport matrices and dual ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007